3.294 \(\int \frac {\sqrt {b \tan (e+f x)}}{\sqrt {d \sec (e+f x)}} \, dx\)

Optimal. Leaf size=55 \[ \frac {2 E\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}} \]

[Out]

-2*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2))*
(b*tan(f*x+e))^(1/2)/f/(d*sec(f*x+e))^(1/2)/sin(f*x+e)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2616, 2640, 2639} \[ \frac {2 E\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]],x]

[Out]

(2*EllipticE[(e - Pi/2 + f*x)/2, 2]*Sqrt[b*Tan[e + f*x]])/(f*Sqrt[d*Sec[e + f*x]]*Sqrt[Sin[e + f*x]])

Rule 2616

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a^(m + n)*(b
*Tan[e + f*x])^n)/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n), Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x]
 /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {b \tan (e+f x)}}{\sqrt {d \sec (e+f x)}} \, dx &=\frac {\sqrt {b \tan (e+f x)} \int \sqrt {b \sin (e+f x)} \, dx}{\sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}\\ &=\frac {\sqrt {b \tan (e+f x)} \int \sqrt {\sin (e+f x)} \, dx}{\sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}\\ &=\frac {2 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.52, size = 62, normalized size = 1.13 \[ -\frac {2 b \sqrt [4]{-\tan ^2(e+f x)} \, _2F_1\left (-\frac {1}{4},\frac {1}{4};\frac {3}{4};\sec ^2(e+f x)\right )}{f \sqrt {b \tan (e+f x)} \sqrt {d \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]],x]

[Out]

(-2*b*Hypergeometric2F1[-1/4, 1/4, 3/4, Sec[e + f*x]^2]*(-Tan[e + f*x]^2)^(1/4))/(f*Sqrt[d*Sec[e + f*x]]*Sqrt[
b*Tan[e + f*x]])

________________________________________________________________________________________

fricas [F]  time = 0.51, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {d \sec \left (f x + e\right )} \sqrt {b \tan \left (f x + e\right )}}{d \sec \left (f x + e\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*sec(f*x + e))*sqrt(b*tan(f*x + e))/(d*sec(f*x + e)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {b \tan \left (f x + e\right )}}{\sqrt {d \sec \left (f x + e\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*tan(f*x + e))/sqrt(d*sec(f*x + e)), x)

________________________________________________________________________________________

maple [C]  time = 0.70, size = 551, normalized size = 10.02 \[ -\frac {\left (2 \cos \left (f x +e \right ) \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}-\cos \left (f x +e \right ) \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}+2 \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )-\sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )+\cos \left (f x +e \right ) \sqrt {2}-\sqrt {2}\right ) \sqrt {\frac {b \sin \left (f x +e \right )}{\cos \left (f x +e \right )}}\, \sqrt {2}}{f \sqrt {\frac {d}{\cos \left (f x +e \right )}}\, \sin \left (f x +e \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(1/2),x)

[Out]

-1/f*(2*cos(f*x+e)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1
/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2
)-cos(f*x+e)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*El
lipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)+2*(-
I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e
))/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))-(-I*(-1+cos(f*x+e))
/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1
/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))+cos(f*x+e)*2^(1/2)-2^(1/2))*(b*sin(f
*x+e)/cos(f*x+e))^(1/2)/(d/cos(f*x+e))^(1/2)/sin(f*x+e)*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {b \tan \left (f x + e\right )}}{\sqrt {d \sec \left (f x + e\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(f*x + e))/sqrt(d*sec(f*x + e)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {\sqrt {b\,\mathrm {tan}\left (e+f\,x\right )}}{\sqrt {\frac {d}{\cos \left (e+f\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(e + f*x))^(1/2)/(d/cos(e + f*x))^(1/2),x)

[Out]

int((b*tan(e + f*x))^(1/2)/(d/cos(e + f*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {b \tan {\left (e + f x \right )}}}{\sqrt {d \sec {\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))**(1/2)/(d*sec(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(b*tan(e + f*x))/sqrt(d*sec(e + f*x)), x)

________________________________________________________________________________________